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ABSTRACT

We develop and test implicit methods for unstructured mesh computations. The approximate

system which arises from the Newton-linearization of the nonlinear evolution operator is solved

by using the preconditioned GMRES (Generalized Minimum Residual) technique. We investi-

gate three different preconditioners, namely, the incomplete LU factorization (ILU), block diag-

onal factorization and the symmetric successive over-relaxation (SSOR). The preconditioners

have been optimized to have good vectorizafion properties. We also study SSOR and ILU

themselves as iterative schemes. The various methods are compared over a wide range of prob-

lems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative

methods, is also investigated. Results are presented for inviscid and turbulent viscous calcula-

tions on single and multi-element airfoil configurations using globally and adaptively generated

meshes.

This research was partially suptmrtedunder the National Aeronautics and Space Administration under
NASA Contract No. NAS1-18605 while the second author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. INTRODUCTION

Impressive progress has been made in the area of algorithms for unstructured meshes in

the last few years. Much attention has been focussed on improving the spatial discretization

operator ([1-3]) which has evolved to a very high degree of sophistication. Usually explicit

methods, such as Runge-Kutta schemes, have been used to march the solution to steady state.

Some acceleration techniques such as local time stepping and residual averaging have also been

implemented in this context. However, for large problems as well as stiff turbulent flow prob-

lems, the convergence rates of such methods degrade rapidly, resulting in inefficient solution

techniques. In order to speed up convergence and propagate information more rapidly

throughout the domain, more sophisticated multigrid or implicit methods are required.

The unstructured multigrid algorithm of Mavriplis [4] has been shown to produce

efficient steady-state solutions for both the Euler and Navier-Stokes equations. In this approach,

convergence acceleration is achieved by time-stepping on coarser unstructured meshes which

may be generated independently from the fine mesh on which the equations are originally

discretized. The principle behind this algorithm is that the errors associated with the high fre-

quencies are annihilated by a carefully chosen smoother (a multi-stage Runge-Kutta scheme)

while the errors associated with the low frequencies are annihilated on the coarser grids where

these frequencies manifest themselves as high frequencies. The disadvantage of such an

approach lies in the fact that the acceleration is achieved through the use of additional

geometric constructions (i.e. user generated coarse meshes) which is often viewed as less desir-

able than for example an algebraic multigrid approach. A fully implicit method, wherein the

system of linear equations is solved by direct methods, was developed and tested by Venkatak-

rishnan and Barth [5]. While providing a robust solution technique, direct methods are plagued

by nonoptimal computational complexity and high storage requirements. Furthermore, for non-

linear systems with inexact linearizations, since the linear system of equations which arises at

each time step need not be solved to a high degree of precision in order to maintain favorable

overall (nonlinear) convergence rates, iterative implicit solvers may be employed.

Iterative implicit methods for unstructured problems have been investigated by Whitaker

et. al [6], Hassan et al. [7], Struijs et al. [8] and Batina [9]. Venkatakrishnan [10] has tested

preconditioned iterative methods on structured grid problems with special emphasis on vector

performance issues. He concluded that some of these methods are quite competitive with other

existing methods, while being readily applicable to unstructured grids. In this work we extend

some of the ideas from [10] to unstructured grids.

Spatial discretization is achieved using piecewise-linear finite-elements. For dissipative

terms, a blend of Laplacian and biharmonic terms is employed, the Laplacian term acting in the

vicinity of shocks. The use of this particular discretization affords a relatively simple construc-

tion of the linear system, while enabling a straight-forward comparison of the implicit schemes

with the previously developed multigrid strategy. For turbulent flow calculations, the unstruc-

tured mesh implementation of the Baldwin-Lomax algebraic model developed in [11] is incor-

porated. This model is not differentiable, and is therefore treated explicitly in the present

scheme. The implicit methods investigated in this work are not restricted to any scheme in

particular, and in the future may be applied to more complex upwind discretizations and more

sophisticated multi-equation turbulence models.
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2. IMPLICIT SCHEME

In non-dimensional conservative form, the full Navier-Stokes equations read

0-_-+---_-x+--_--= Re-----f-[ 0x + 0y J (I)

where w representsthe solutionv_ (co-nserved-variables),and :c a_ g, representlille

Cartesiancomponents of the convectivefluxeswhich are non linearfunctionsof the w vari-

ables,and f, and g, arethe Cartesiancomponents oftheviscousfluxes,w_ch arefunctionsOf

boththe w variables,and the firstderivativesof thew variables.The variablesarestoredatthe

verticesof a triangularmesh w_ch is generatedfi-oma_prescn'bed distributionOf p0intsby

Delaunay triangulation[4].Detailsof the sp-atialdiscretizationusing a finitevolume scheme

and itsrelationto a piecewise-linearfiniteelementmethod may be found in [4].

The discretizationof the governingequationsin space leadsto the followingsystem of

ordinary differential equations: ..........

dw + R (w) = 0 (2)
M--_-

where R representsthe spatialdiscretizationoperator,or the residual,which vanishes at

steady-stateand M representsthe mass matrix,which containsthe informationrelatingthe

averagevalue in a controlvolume to the valuesaithe vertices.Since we are only interested

hereinsteadystatesolutions,themass matrixcan be replacedby theidentitymatrixyielding

dw
a--T+ n (w) = 0 (3)

If the time derivative is replaced by: .... - _ _ ......

dw w n+l - w m

-- (4)
dt At

then an explicit scheme is obtained by evaluating R (w) at time level n, and an implicit scheme

by evaluating R(w) at level n+l. In the latter case, linearizing R about time level n, one
obtains:

I bR
( _ + _ ) _wi = -n; (5)

,_Wi= (W"+i- W")i

Eqn. (5)representsa largenonsyrmnetriclinearsystem of equationsfortheupdatesof thevec-

torof unknowns and needs to be solvedat_ach tVmestep.As 8t tendsto infinity,themethod
0R

reducesto the standardNewton's method. The term _ symbolicallyrepresentsthe implicit

sideupon linearizationand involvesthe Jacobianmatricesof the fluxvectors.The discretized

convectivefluxesarelinearizedexactlyon theleft-handsideof theequation.Only a firstorder

accuraterepresentationof the artificialdiss_p'_afion_ermsisemployed in thelinearizationon the

lefthand side,due to storageconsiderations.This resultsin the graph of the sparsematrix
OR
bW- being identicalto thegraph of thesupportingunstructuredmesh (i.e.every vertexin the

matrixis connectedonly to itsnearestneighbors).The sparsematrixthus has a symmetric

structure,even though thematrixitselfisnot symmetric. Linearizationof thecomplete bihar-

monic dissipative terms would result in a much denser matrix with a different graph, since
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each vertex would also be connected to its second to nearest neighbors. The storage require-

ments for the representation of such a matrix become prohibitive. The penalty in making this

approximation in the linearization is that we can never approach Newton's method (with its

associated quadratic convergence property) due to the mismatch of the fight and left hand side

operators in Eqn. (5). The viscous fluxes are linearized with a few approximations. First, the

laminar viscosities, which are computed using Sutherland's law, are not linearized in the

energy equation, and the average quantities at the cell centers are approximated as well. The

validity of these approximations has been established by solving a very low Reynolds number

laminar flow at very high CFL numbers (non-dimensionalized time steps). Second, the alge-

braic turbulence model, being nondifferentiable is not linearized and is treated explicitly.

Since the linear system is itself approximate there is little to be gained by solving it to a

great precision. To obtain favorable overall (nonlinear) convergence, it has been found that it is

better to solve the linear problem to a moderate degree of precision and proceed to the next

time step. However, for stiff problems it may well be necessary to solve the linear problem

well and one has the control to do so in the present framework. The time step in Eqn. (5) is

taken to be inversely proportional to the L 2 norm of the residual. Since we have a mismatch of

operators in Eqn. (5), it is necessary to limit the maximum time step.

The system of linear equations is solved in the present work by the GMRES technique

developed by Saad and Schultz [12]. There is a host of iterative methods for solving nonsym-

metric linear systems. Each of these methods has its own advantages but in the present context

we shall just employ one: GMRES. Venkatakrishnan [10] compared the Chebychev semi-

iteration technique to GMRES for structured CFD problems and found GMRES to be margi-

nally better. Moreover, the choice of a particular iterative technique is not as important as that

of a good preconditioner, and the better the preconditioner, the more computationally intensive

it is, diminishing the relative importance of the iterative method. Without a good precondi-

tioner, most of these iterative methods fail to converge for the kind of stiff problems which

arise in computational fluid dynamics.

The GMRES technique is quite efficient for solving sparse nonsymmetric linear systems

and is outlined below. Let Xo be an approximate solution of the system

A x +B =0 (6)

where A is an invertible matrix. The solution is advanced from x0 to xk as

Xk = Xo+yk

GMRES(k) finds the best possible solution for y_ over the Krylov subspace <

v_Av_A2vt,....Ak-_v_ > by solving the minimization problem

Ilrkll =Miny Ilvx +A yll

vl=A xo+B , rk =A xk +B

GMRES procedure forms an orthogonal basis VlV2,. .....vk (termed search directions) spanning

the Krylov subspace by a modified Gram-Schmidt method. Storage is required to store these

search directions. As k increases, the storage increases linearly and the number of operations,

quadratically. To mitigate this, Saad and Schultz also describe GMRES (k,m) which is a res-

tarted GMRES (k), where the k search directions are discarded and recomputed every m

cycles. GMRES can also be thought of as an optimal polynomial acceleration scheme. Precon-

ditioning greatly improves the performance of GMRES as well as the other related iterative
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methods.It decreasesthe sizeof the spectrumso that the optimalpolynomialgeneratedby
GMREScanbetterannihilatetheerrorsassociatedwitheacheigenvalue.

3. PRECONDITIONING

Instead of Eqn. (6) the preconditioned iterative methods solve the following systems:

P A x+P B =0 (7)

A Q (Q-lx)+B =0 (8)

The systems of linear equations in Eqn. (7) and Eqn. (8) are referred to respectively as, left

preconditioned and fight preconditioned - sys_tem_sand P and Q as left and fight preconditioners.
The role of the preconditioner is to cluster the eigenvalues around unity. For reasons given in

[10] we shall just employ right preconditioning. We have examined three preconditioners,

namely the incomplete LU factorizaiion, SSOR and block diagonal. We will describe below the

preconditioners and the optimizations done to extract the best vector performances out of them.

A simple choice is a block diagonal precon-d-_tioner which computes the inverse of the

4x4 diagonal block associated with a grid point. Good vectorization when using this precondi-

tioner is easy toachieve by u _r_oUing_e LU decomposition of the 4x4 diagonal matrix as wen
as the forward and back solves over all the grid points. A filmily of preconditioners arises out

of an incomplete LU factorization and is referred to as ILU(n). Here n represents the level of

fill-in, n=0 implies no fill-in beyond the original nonzeropattem. In the present work ILU(0) is
used since it is quite robust and has lower storage requirements. It is also possible to cast the

symmetric successive over-relaxation (SSOR) as a preconditioner as has been shown by Saad

[14]. Saad recommends setting the relaxation factor to 1 when using SSOR as preconditioner.

In this case the SSOR preconditioner looks exactly - like the ILU preconditioner, except that the
lower and the upper factors are read off directly from the matrix A rather than by an incom-

plete factorization. The incomplete factorization is a nonvectorizable procedure (although paral-

lelizable by using wavefront ordering described below) and SSOR preconditioning dispenses
with this sequential procedure. We wiU also test ILUfactorization and SSOR as iterative tech-

niques by themselves for solving the linear sub-problems at each time step.

4. DATA STRUCTURES

In this section we describe the data structures and kernels employed which are critical in

reducing memory requirements and obtaining good performance. In the course of the GMRES

method with preconditioning as per Eqn. (8) we need to address two kernels.

The first kernel is a sparse matrix - dense vector multiply to compute A x. The most

commonly used data structures [15] are not ideal for this purpose since they have poor vectofi-

zation properties. The ITPACK data structure, which allocates storage based on the maximum

number of nonzeros in a row, is inefficient for sparse matrices arising from unstructured grids,

because the degree of a vertex i s arbitr_, q_he data structure thatwe use for storing the

sparse matrix A is most easily explained by interpreting the underlying triangular mesh as an

undirected graph. Associated with each edge are the two vertices, say nl and n2, which are

incident to the edge: __e spatial discretizafion o_rator(the fight hand side) utilizes this data
structure an-d=therefore, this information is already available. We store the two 4x4 matri_

which contain the influence of n2 on nl (entry in row nl and column n2 in A) and vice versa.

The diagonal blocks are stored separately. With such a data structure, we can carry out a
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matrixvectormultiplicationefficientlyby employingacoloringalgorithmto colortheedgesof
theoriginalmeshto getvectorperformance.Notethatthedatastructuredealswith blocksof
4x4 matrices;for a scalarmatrix theabovementioneddatastructureis roughlyequivalentto
the coordinatestoragescheme[15]. However, since the graph of the sparse matrix is

equivalent to that of the supporting unstructured mesh, the matrix is known to have a sym-

metric structure (although the matrix itself is not symmetric). Hence, we achieve a savings

with respect to the standard coordinate storage scheme by only storing the coordinates of the

upper half of the matrix.

The second kernel deals with the effect of the preconditioner Q on a vector. Q is D -_ for

block diagonal preconditioning and (/7 0) -_ for ILU/SSOR preconditioning, where the ~ indi-

cates approximate factors. The block diagonal case is straight-forward in this aspect and was

discussed earlier. The ILU/SSOR preconditioners require repeated solutions of sparse triangular

systems. By using a level scheduling (also known as wavefront ordering) [16,17] it is possible

to obtain good vector performance. Under this permutation of the matrix, unknowns within a

wavefront are eliminated simultaneously. The key step in this procedure is an off-diagonal rec-

tangular matrix - vector multiply. This requires that £ and 0 be stored in a convenient form

and we choose a data structure similar to that of A. In addition to the nonzero blocks and the

column numbers which are provided by the factorization, we store the row numbers. With this

additional information, the data structure becomes similar to the edge-based data structure

employed for the A matrix except that we only store one block per edge. The off-diagonal

matrix vector multiply can then be vectorized by interpreting the rectangular matrix as a

directed graph and coloring the directed edges. The performances are further enhanced by per-

forming all the operations on blocks of size 4x4 since we are dealing with coupled systems.

The memory requirements for the present algorithm are linear in n, the number of ver-

tices. The implicit scheme requires three arrays of size 7x16n in addition to a few integer

arrays of size n. One of these arrays stores the matrix A in the edge-based data structure, a

second in the YSMP format which is suitable for the factorizalion and the third contains the

/7 and the 0 factors. The factor 7 comes from having 3 times as many edges as vertices (valid

for all 2-D triangular grids, neglecting boundary effects); we store two blocks per edge plus the

diagonal matrix for all the vertices. The second array is reused for storing the search directions

in GMRES, permitting up to 27 search directions to be stored. Block diagonal preconditioning

dispenses with one of these arrays.

The ordering of unknowns has a bearing on the convergence properties of many iterative
methods. This is true for iterative methods which involve a directional bias such as the

SSOR/ILU preconditioning. For structured meshes in [10,18] it was found that a column-major

ordering which minimized the bandwidth (the "most local" ordering) yielded the best conver-

gence rates. For unstructured meshes we have settled on the Reverse Cuthin-Mckee (RCM)

ordering [15]. This is a standard ordering used in sparse direct methods to reduce fill-in, but it

also appears to be the "most local" ordering. We have also tested orderings based on coordi-

nates of the vertices (sorting the vertices by the x coordinates, y coordinates or some combina-

tion of x and y coordinates). The RCM ordering gives marginally better convergence rates over

a wide range of problems. RCM is also more efficient in that it creates fewer wavefronts, thus

producing longer vectors.

To achieve good overall vector performance, careful attention also needs to be paid to the

assembly of the matrix. In the present set-up, the matrix assembly is performed by looping

over the edges as far as possible. This is easily done for the inviscid fluxes and the first order
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dissipativeterms,but is quiteinvolvedfor thefull viscousfluxes.We havefoundit expedient

to assemble the matrix for the viscous fluxes by looping over the triangles instead and coloring

the triangles to achieve vectorization. The Jacobians are derived analytically, but with some

approximations for the viscous terms as was discussed earlier.

5. RESULTS AND DISCUSSION

The iterative method outlined above requires a few parameters. The start-up CFL number

and the maximum CFL number that can be used need to be specified. It is also possible to

freeze the factorization after a few time steps (or after a prescribed reduction in the residual)

and increase the efficiency of the code, since it eliminates the assembly and/or the factorization

of the matrix. This is an additional parameter. GMRES requires a few parameters. It requires

the maximum number of search directions k, the number of restart cycles m and a tolerance

level which specifies the desired order of reduction of the residual of the linear sub-problem.

The solution to the linear system is terminated when the number of iterations exceeds the

specified maximum whether or not the tolerance criterion is met. In all the problems, the toler-
ance is set to 10-s. _ ---

We first study a standard airfoil case, namely inviscid flow over the ubiquitous
NACA0012 airfoil at a freestream Mach number of 0.8 at 1.25 ° angle of attack. The unstruc-

tured grid contains 4224 vertices or 8192 triangles. A close-up of the nearly uniform grid is

shown in Fig. la. The solution (not shown here) agrees with standard results. We obtain lift,

drag and moment coefficients of 0.3523, 0.0226 and -0.0452 respectively. The convergence

histories of five different methods are shown in Fig. lb as a function of CPU time. Since we

are dealing with different methods whic h require varying amounts of work at each time step

we believe that CPU time is the only true measure for comparing them. Since there are quite a

few parameters involved in each of these methods, what we have shown is the "best" conver-

gence history obtained with each method. GMRES with ILU preconditioning (GMRES/I'LU)
uses 5 search directions, CFL 20-106 and freezes the factorizafion after 30 time steps.

GMRES/SSOR, wherein SSOR is used as the preconditioner, employs 15 search directions,

CFL 20-106 and freezes the matrix after 30 time steps. GMRES/DIAG, which uses block diag-

onal preconditioner, employs 25 search directions with 3 restarts, CFL 10-500,000 and freezes

the preconditioner after 25 time steps. The ILU iteration uses CFL 1-50 and freezes the matrix

after 25 steps. Finally, the SSOR iteration uses CFL 1-25 and freezes the matrix after 30 time

steps. Using multiple "inner" sub-iterations with the ILU and the SSOR iteration schemes in

order to be able to use larger time steps turns out be less efficient for this problem. The

number of time steps taken by GMRES/ILU, G_S/SSQR, GMRES/DIAG, ILU andS SOR
are 75_100,-75, 700 and 700 respectively. The parameters given above for the five methods,

we believe, are nearly optimal for this problem and yield the best convergence history for each

of the methods. Having to choose many parameters is a major drawback in using iterative

methods to solve the approximate linear systems arising from nonlinear problems. However,

we will be able to provide some guidelines for choosing these parameters for the best of these

methods, namely GMRES/ILU, by solving a few more representative problems. In Fig. lb, we

notice that GMRES/DIAG is quite slow even for this simple problem, while ILU iteration

appears to be quite good. SSOR iteration and GMRES/SSOR have similar convergence his-

tories. SSOR as a preconditioner is not as effective as the ILU preconditioner, GMRES/ILU

appears to be the best of all the methods. As we shall see, as the problems get bigger and

more stiff, GMRES/ILU performs much better than the other four methods.
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We next consider inviscid subcritical flow over a 4 element airfoil at a freestream Mach

number of 0.2 and angle of attack of 5° . The triangular mesh employed has 10395 vertices.

The grid is shown in Fig. 2a. The solution is not shown here and may be found in Mavriplis

[4]. In Fig. 2b we present the convergence histories of GMRES/ILU, GMRES/DIAG and ILU

and SSOR iteration. GMRES/SSOR had great difficulties in the initial stages and is not shown.

GMRES/ILU converges much better than the other methods. The parameters for GMRES/ILU

are 10 search directions and CFL 20-106, the factorization being frozen after 30 time steps.

GMRES/DIAG employs 25 search directions with 2 restarts, CFL 10-5x 10s and freezes the

preconditioner after 30 time steps. ILU iteration uses CFL 1-50, freezes the matrix after 50

time steps and does not use sub-iterations. SSOR iteration uses CFL 0.5-5 and freezes the

matrix after 100 time steps. The number of time steps taken by GMRES/ILU, GMRES/DIAG,

ILU and SSOR are 100, 70, 400 and 400 respectively. SSOR, either by itself or as a precondi-

tioner, is clearly unsatisfactory.

We compare the performances of the methods on a transonic turbulent flow over an

RAE2822 airfoil, referred to as Case 6. The flow conditions are M. = 0.729, c_ = 2.31 ° and

Reynolds number 6.5 x 106 based on the chord. The flow is computed on a mesh with 13751

vertices which contains cells in the boundary layer and the wake region with aspects ratios up

to 1000:1. The grid is shown in Fig. 3a. The pressure plot and skin friction distribution and

experimental data are shown in Figs. 3b and 3c. The lift, drag and moment coefficients are

0.7342, 0.0132 and -0.0978. Fig. 3d shows the convergence histories of the various methods.

We notice that only GMRES/ILU and GMRES/DIAG converge, the latter doing so much more

slowly. GMRES/SSOR diverges for any reasonable CFL numbers at all and its convergence

history is not shown. The parameters for GMRES/ILU are 25 search directions and CFL 5-

25000. We freeze the factorization after 80 time steps. We also freeze the turbulence model

after nearly six orders of reduction in the residual; otherwise, the residual hangs and the con-

vergence of the method slows down. The effect of freezing the turbulence model in this

fashion has minimal effect on the aerodynamic coefficients (less than 0.02% change in lift

coefficient). The parameters for GMRES/DIAG are the same as for GMRES/ILU. The number

of time steps taken by both GMRES/ILU and GMRES/DIAG is 150. The unstructured mul-

tigrid algorithm of Mavriplis [4] takes nearly 300 sees. on the YMP to reduce the L2 norm of

the residual to .3 x 10-3 and GMRES/ILU takes about 450 sees. to get to the same level (7 ord-

ers of reduction in residual) for this problem. In the full multigrid algorithm, the problem is

first solved on coarser grids, whereas GMRES/1LU starts from freestream conditions on the

fine grid. The ILU and SSOR iterations use 10 sub-iterations, CFL .5-2.5 and still do not con-

verge after 200 time steps.

The final case computed is turbulent flow over a four-element airfoil computed on an

adapted grid with 48691 vertices. The grid and a close-up view near the leading edge are

shown in Figs. 4a and 4b. The flow conditions are M. = 0.1995, ct = 16.02 ° and Reynolds

number of 1.187x 106. The convergence histories with and without freezing the turbulence

model are shown in Fig. 4c as a function of the CPU time. The number of time steps taken is
400. The multigrid algorithm takes 2100 sees. to reduce the residual to 1.79 x 10-2 while

GMRES/ILU takes about 2000 sees. to reach the same stage (five orders of reduction of the

residual). The computed Mach contours for this case are shown in Fig. 4d, illustrating the

complexity of this flow. In Fig. 4e the computed surface pressure distribution is compared with

experimental wind-tunnel data.
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In summary,we havefoundthat for inviscidflows5-10 searchdirectionsareusually
sufficientwhereasthe turbulentviscouscasesrequire25searchdirectionswith GMRES/ILU.
Thestart-upCFL numberis usuallyabout20 for inviscidproblemsandabout5 for turbulent
viscouscasesandtheCFLnumberis allowedto increaseup to 500-50000fold. Weusenon-
restartedGMRESWheneverpossible,which eliminatesoneof the parametersandis better
suitedfor stiff problems(see[12]).The GMRES/ILUrunsat about90-120MFlopson the
Cray YMP (uni-processor) at the NAS facility, with performance improving as the problems

get larger.

6. CONCLUSIONS

We have compared five candidate implicit methods for solving the compressible Navier-

Stokes equations. For inviscid problems, with a small number of vertices and low cell aspect

ratios, many of the methods work well, GMRES with ILU preconditioning performing the best.

For larger problems, especially at high Reynolds numbers, almost all the methods except for

GMRES/ILU converge extremeYy-sqb_i-y, if at all. Not surprlsihgly, SSOR, either an an itera-

tion or as a prec0nditioner: _Suffers dr_atic_y_ the problem increases= in si_ or in the

degree of complexity. GMRES/ILU is quite competitive With the _ctured multigrid algo-

rithm, while eliminating the need for=independent coarse grids to be generated. It does, how-

ever, incur a larger memory overheard th_the muitigrid algorithm. Even though these methods

have been compared for a particuiar spatial discretizafion, we believe the trends should hold for

other discretizations as well. We have carried out a number of optimizations to extract the best

vector performances out of all these methods. Finally, the turbulence model itself appears to

inhibit convergence in the latter stages. TI_ n_6ds_rther investigation and perhaps incorporat-

ing a field equation model with proper Iinearization would solve the problem.
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Figure la

Mesh for Computing Inviscid Fi0w over NACA 0012 Airfoil

(Number of Vertices = 4224)
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Figure lb

Convergence Histories of Various Implicit Methods
for Inviscid Flow Over a NACA 0012 Airfoil

(Mach = 0.8, Incidence = 1.25 degrees)
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Figure 2a
Mesh for Computing inviscid Flow over a Four-Element Airfoil

(Number of Vertices = 10,395)
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Figure 2b

Convergence Histories of Various Implicit Methods
for Inviscid Flow Over Four-Element Airfoil

(Mach = 0.2, Incidence = 5 degrees)
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Figure 3_a
Mesh for Computing V!sco_ Turbulent F!ow Over an RAE 2822 Airfoil

(Number ofVe_ces = 13751)
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Figure 3b

Computed Surface Pressure Distribution for Viscous Turbulent Flow over RAE 2822 Airfoil

(Mach = 0.729, Incidence = 2.31 degrees, Reynolds Number --- 6.5 million)
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Figure 3c
Computed Skin Friction Distribution over RAE 2822 Airfoil

(Mach = 0.729, Incidence = 2.3I_egrees, Reynolds Number = 6.5 million)
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Figure 3d

ConvergenceHistodes of Various ImpficitMethodsfor Viscous Turbulent Flow
over anRAE2822Airfoil

(Math = 0.729, Incidence= 2.31degrees, Reynolds Number = 6.5miDion)
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Figure 4a

Figure 4b

Close-up View in Region of Leading Edge of Adaptively Generated Mesh about Four-Element Airfoil

=

Global View of Adaptively Generated Mesh for Computing Viscous Turbulent Flow over a Four-Element Airfoil

(Number of Vertices = 48,691)
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Figure 4c

Convergence History of ILU-GMRES Implicit Scheme and Effect of Freezing
the Algebraic Turbulence Model for Flow Over Four-Element Airfoil

(Mach = 0.1995, Incidence = 16.02 degrees, Reynolds Number = 1.187 million)
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Figure 4d

Computed Mach Contours for Viscous Turbulent Flow Over Four-Element Airfoil
(Mach = 0.1995, Incidence = 16.02 degrees, Reynolds Number = 1.187 million)
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Figure 4e

Computed Surface Pressure Diswibution and Comparison with Wind-Tunnel Data
for Viscous Turbulent Flow Over Four-Element Airfoil

(Mach -- 0.1995, Incidence = 16.02 degrees, Reynolds Number = 1.187 million)
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